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1. INTRODUCTION

In the past few years, Boolean sums of interpolating projectors have
figured prominently in the formulation of blended interpolation, pioneered
by, for example, Gordon and Hall [3,4], and in the representation of
some finite elements. More recently, Boolean sums have been used to
obtain other types of interpolants, including splines.

Generally, if P: X -> 1m P and Q: X -> 1m Q are projectors, with
1m Q c X, then the Boolean sum P EB Q is defined by (P $ Q) f =
P(f-Qf)+Qf, VfEX, and (P$Q)fElmP$lmQ. Further, ifImPcX
and QP = Q, then P $ Q is again a projector. In our applications X is
usually a function space, 1m P II 1m Q = 0, both 1m P and 1m Q being
subsets, or more frequently subspaces, of X.

In the blending context, take X = C{ [a, b] x [e, d]}. The intervals are
partitioned so that a=x l <x2< ... <xm=b, e=YI<Y2< '" <Yn=d.
Let P x and Py be interpolating projectors on X in the sense that, for f EX,

(Pxf)(x;, y) = f(x;, y), (Pyf)(x, yJ=f(x, YJ, i= 1, ..., m;j= 1, ..., n.

It is then found that P x $ Py is a projector with the "transfinite" inter­
polation property

i= 1, ..., m; j= 1, ..., n.

Another application of Boolean sums occurs in the improvement of the
approximating properties of interpolating projectors. For example, one
may have an interpolating projector P on a function space X containing
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~, such that 1m P does not contain ~. If Q: X -> ~ is a projector and
QP = Q, then P $ Q is an interpolating projector with the additional
property (P$Q)/=I, V/E~.

Boolean sums also occur implicitly in kriging, a term used by
geostatisticians for a process of estimating the value of a function (of two
variables) at a point Xo, in terms of known values at other points Xi' In one
of its formulations it can be shown that kriging involves an interpolating
projector P whose image is the linear span of functions cP i which are trans­
lates to the Xi of a basic function cpo The latter is a generalized covariance
which happens to also be a function. Quite often, cp(x, Y) = {x2+ y2} 1/2;
cp(X, y) = {x2+ y2} 3/2 is also used. The projector Q is of weighted least­
squares type, but with an indefinite weight matrix, and 1m Q = £!Pm, where
m is typically 0 or 1.

Surface splines, as developed, for example, by Duchon [2] and
Meinguet [6], can be expressed as Boolean sums much as in the kriging
method. Some preliminary studies of this connection have been announced
by Salkauskas [8]; a more thorough and profound account of the formal
equivalence of kriging and surface splines is given by Matheron [5].

While the above are most often applied in the bivariate case, there are
interesting formulations of univariate splines as Boolean sums. For exam­
ple, most C 2 piecewise cubic spline interpolants ofI E X can be represented
as (P $ Q)I, where P: X -> span{1X - X il 3

} 7= I is an interpolating projector,
and Q is a certain projector onto ~. In the sequel we discuss properties of
the above, as well as generalizations to higher-degree univariate splines.
Since our projectors always sample lEX at n distinct points Xi' it will be
sufficient to assume that X = IR n

. Also, it is clear that now QPf = Qf, for Q
"sees" the same values in Pf as in f. Consequently P$ Q will always be a
projector.

2. UNIVARIATE SPLINES AS BOOLEAN SUMS

Suppose that XI <X2< ... <xn are given. In [1] it is shown that the
matrices

v = [Ix.- X·1 2k + 1]1':· . .:I} ....., I,}....., n

are non-singular. We will assume that n > 2k - 1. Hence for any f E IR n there
is a unique CElRn such that s(X)=LJ=ICjlx-xjI2k+1 interpolates the
given data, i.e., s(xJ = Ii' i = 1, ..., n. The corresponding interpolating
projector may be represented as
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We see that Pf is piecewise polynomial of degree 2k + 1 with knots
XI' ..., Xn and of continuity class C 2k.

Now let B= [XrIJI<;;;<;;n,l<;;jOk and for WElRnxn positive definite
on the image of B, let Q w be the corresponding weighted least-squares
projector defined by

THEOREM 2.1. Let s(x) be a spline of degree (2k + 1) with knots
XI < X2 < '" < Xnand S E IRn be the vector offunction values of s(x) at the
knots. If s ¢ 1m B, i.e., s is not polynomial of degree (2k - 1), then there
exists a W, positive definite on 1m B, such that

s(x) = (PEB Q w)s. (2.1 )

Further, if S Elm B then there exists a W for which (2.1) holds if and only
if s(x) is itself a polynomial of degree 2k - 1.

Proof As s(x) is a spline of degree (2k + 1), S(2k)(X) must be piecewise
linear with knots XI <x2 < ... <xn . Hence there are coefficients fY.; such
that

n

S(2k)(X) = L (I.; Ix - x;i.
;=1

Upon integrating 2k times, we see that

n 2k - 1

S(x)= L CjIX-XjI2k+l+ L ajXj

j=1 j=O

for some coefficients cj and aj . Therefore,

s= Vc+Ba.

Now, explicitly,

(2.2)

(2.3 )

PEB Qws = [Ix - x 11
2k + I, 00" Ix - xnl

2k +1] V-I(I - BM)s

+ [1,x,oo.,X 2k - 1JMs, (2.4)
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M=(B'WB)-l B'W.

Comparing (2.2) with (2.4) we see that s = PEt> Q wS if

or equivalently,

V-V-BM)s=c

(I-BM)s= Vc

and

and

BMs=Ba,

BMs=Ba.

But by (2.3), Vc=s-Ba and so s=PEt>Qws if

(I - BM)s = s - Ba

which reduces to the single condition

and BMs=Ba,

BMs=Ba,

which itself, as B is of full rank, reduces to the condition

Ms=a.

If s E 1m B, that is, s = Bb, then

Ms=(B'WB)-1 B'WBb=b,

and

(I - BM)s = Bb - Bb = 0,

so that by (2.4), s = PEt> Q wS only if s(x) = [1, x, ..., X
2k -I] Ms, i.e., s(x) is

a polynomial of degree (2k - 1). Clearly, in this case any positive definite
W provides s = PEt> Q ws.

If s ¢ 1m B, we must show that a W may be found such that Ms = a. But
there are certainly many matrices, A E 1R 2k

x n (recall that we assume that
n > 2k - I), with the property that

and As=a.
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Let W = AlA. If x = BbE 1m B then xlWx = b'B'A'ABb = b'I~J2kb = bIb
and W is positive definite on 1m B. Further,

(BIWB)-l B'Ws = (B'A'AB)-l BIAlAs

= ((ABr AB)-I (ABr a

=a.

The result follows. I

In the case of natural splines there is a somewhat more specific result
concerning the weight matrix W of the projector Q, preliminary to which
we require the following two lemmas. Let C= [x{-l]l,,;;;,,;;n,l";;j,,;;k+l' C
resembles B (in fact they are equal when k = 1) but includes monomials up
to degree k only.

LEMMA 2.2. (- 1)k - 1 V is positive definite on the kernel of CI.

Remark. This is a special case of the results of Micchelli [7]. We
would, however, offer the following completely elementary proof.

Proof Let O;6CEN(C) and s(X)=:L7=1 Ci IX-XiI2k+l. Now an easy
calculation shows that for k+ 1~j~2k, sU)(xd =sU)(xn) =0, that is, s(x)
is a natural spline. We now integrate J~~ (S(k +1)(X))2 dx, by parts, k times.
By the natural spline end conditions we have

rn
S(k+ 1)(X) S(k+ 1)(X) dx

XI

= (_1)k nfl r+ 1
s(l)(x) S(2k+ 1)(X) dx

j= 1 Xi

=(_1)kn~IS(2k+l)1 . fXi+IS(l)(x)dx
i..J (Xj,Xj+l)
j=l ~

n-l

=(_1)k L S(2k+I)I(xPi+Jl(S(xj+d-s(xj)).
j=l

A manipulation of the sum gives, for the above,

n

(-1 )k-I L s(xJ{jump in S(2k+ I) at xJ.
j~l
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But an elementary calculation reveals that {jump in S(2k + 11 at Xi} =
2(2k + 1)! ci and we see that

2( -1 )k-l (2k + I)! f cjs(xJ =rn

(S(k+ (1(x))2 dx.
i~ I .q

As c # 0, s(x) is certainly not a polynomial of degree k and hence

rn

(S(k+l)(X))2dx>0.
Xl

Now recall the definitions of s(x) and the matrix V and notice that

n

cTc = L cjs(x).
j~1

The result follows. I

LEMMA 2.3. The matrix C'V-1C is invertible.

Proof Suppose that C'V-1Cx=0. Let c= V-ICX. Then C'c=O, that
is, c E N( C 1

) and

clVc = XIC'V- 1VV-ICx

=XIC1V-ICX

Hence by Lemma 2.2, c = 0 and therefore Cx = O. But C is of full rank and
so x =0. I

With P as in (2.0), let Q now represent a projector onto the polynomials
of degree k given by

Qf= [1, x, ..., x k
] Mf,

where MEIR(k+l)xn is such that MC=h+I'

THEOREM 2.4. The representation s(x) = (PEe Q)s holds for all natural
splines, s(x), of degree (2k + 1) with knots XI < X2 < ... < Xn if and only if
M = (C'V-I C) - I C'V- 1, that is, Q is the least-squares projector with weight
W=V- I

•
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Proof First suppose that M=(crV-1C)-1 crv- I. Consider any
natural spline s(x). Let t(x)=PEeQs= [lx-x l I2k +!, ..., Ix-xnI2k +l

]

V-I(I - CM)s + [1, x, ..., xk] Ms. By the uniqueness of natural inter­
polating splines we need only show that t(x) interpolates s(x) and that t(x)
is natural. It is clear that t(x) interpolates. To show that t(x) is natural,
write

n k

t(x)= L CjIX_X)2k+l+ L ajxj,
j= I j~O

where c = V-1(I - CM)s and a = Ms. As was stated in the proof of
Lemma 2.2, t(x) is natural if c E N( cr). But

CIC = CIV-I(I - CM)s

= CIv-l(I - qcrv-IC)-I crv-I)s

= CIV-IS- (crv-IC)(crv-IC)-1 crv-Is

= CIV-1S- crv-Is = o.

Conversely, if s(x) = PEe Qs is natural then again we must have 0 = crc =
crV-I(I-CM)s=crv-IS-(crV-IC)Ms. Hence, as CIV-IC is non­
singular,

Since s E IR n is arbitrary we must have
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